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Abstract

We used a high-density single-nucleotide polymorphism array to genotype 75 Plasmodium falciparum isolates recently collected
from Senegal and The Gambia to search for signals of selection in this malaria endemic region. We found little geographic or
temporal stratification of the genetic diversity among the sampled parasites. Through application of the iHS and REHH
haplotype-based tests for positive selection, we found evidence of recent selective sweeps at a known drug resistance locus,
at several known antigenic loci, and at several genomic regions not previously identified as sites of recent selection. We discuss
the value of deep population-specific genomic analyses for identifying selection signals within sampled endemic populations of
parasites, which may correspond to local selection pressures such as distinctive therapeutic regimes or mosquito vectors.
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Plasmodium falciparum is an obligate protozoan parasite that
causes malaria worldwide, killing �800,000 annually (WHO
2010). It faces strong selection pressures from host immune
responses and from drugs and (potentially) vaccines.
Genome-wide scans for natural selection can identify genetic
loci responding to these pressures. Most previous scans for
selection in P. falciparum have used global collections of par-
asites and were thus well positioned to identify loci undergo-
ing selection worldwide (Mu et al. 2010; Van Tyne et al.
2011). However, much natural selection occurs at smaller
geographic scales, both because selective forces such as
drug regimes and insect vectors vary geographically and be-
cause selected phenotypes can appear independently in dif-
ferent regions. Detection of localized selection is difficult in
global survey but instead requires a deep survey from a single
geographic region; the one study similar to this to date (Mu
et al. 2007) examined primarily Asian parasites.

To search for selection in a single African parasite popula-
tion, we collected 75 recent P. falciparum isolates (supple-
mentary table S1, Supplementary Material online) from four
locations in Senegal and The Gambia, a region spanning sev-
eral hundred kilometers. All parasites were hybridized to a
high-density Affymetrix single-nucleotide polymorphism
(SNP) array with �17,000 assays (Van Tyne et al. 2011);
after filtering out mixed infections and closely related para-
sites (which are uninformative for haplotype-based tests of

selection), we analyzed genotypes from 70 samples for selec-
tive sweeps.

We first checked for population structure within our sam-
pled region. Principal components analysis (fig. 1) showed
little structure, whereas FST (which measures population dif-
ferentiation) indicated a small, statistically significant differ-
ence between Senegal and The Gambia (FST = 0.0072,
P< 0.0001). This proved to stem from subtle differences be-
tween culture-adapted parasites (present only in the Senegal
set) and parasites isolated directly from patient blood
(see supplementary note and supplementary fig. S1,
Supplementary Material online). We found no significant
structure in time across the �10 years of sample collection.
The lack of structure suggests enough gene flow within this
region (on a scale of hundreds of kilometers) that sampling
for genome-wide association studies need not be finer
grained spatially, at least for this sample size. We also mea-
sured linkage disequilibrium throughout the genome and
found it generally consistent with previous reports (see sup-
plementary note and supplementary figs. S2 and S3 for details
and caveats, Supplementary Material online).

We identified possible selective sweeps using two
haplotype-based tests for positive selection: relative extended
haplotype homozygosity (REHH) (Sabeti et al. 2002) and inte-
grated haplotype score (iHS) (Voight et al. 2006). These tests
identify alleles that lie on unusually long haplotypes for that
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region, indicative of a recent selective sweep. We detected 11
loci with genome-wide significance, including the well-
characterized pfcrt locus (Fidock et al. 2000) and a large
region on chromosome 6 (fig. 2, table 1; supplementary
table S2 has detailed annotation, Supplementary Material
online). Five of the loci overlap with previously reported sig-
nals (Mu et al. 2010; Van Tyne et al. 2011). The signals of
selection appeared consistently in both our directly drawn
and our culture-adapted parasite sets (supplementary fig. S4,
Supplementary Material online) and were little changed
when we restricted our analysis to a 2-year time period (sup-
plementary fig. S5, Supplementary Material online) or used a
uniform recombination map. After removing the 11 loci, the
remainder of the genome roughly conforms to the null ex-
pectation for test scores (fig. 2c and d).

Senegal and The Gambia share a similar history of drug
regimens, except for three years of amodiaquine use in
Senegal but not in The Gambia (see supplementary note,
Supplementary Material online). Given the role that loci
such as pfcrt, with its large selective sweep, play in drug resis-
tance (Fidock et al. 2000), it is reasonable to speculate that
some of these novel sweeps also reflect adaptation to drug
pressure. Although resistance alleles at loci such as pfcrt,
pfmdr1, and dhfr contribute significantly to drug resistance
in P. falciparum, it is known that other genes also affect re-
sistance to drugs (Patel et al. 2010) or have undergone com-
pensatory changes to offset the fitness cost of resistance
alleles (Jiang et al. 2008).

Contrary to intuition, several of the loci with evidence of
directional selection are known antigenic loci, which are
thought to be subject primarily to balancing selection; these
include ama1, trap/ssp2, clag2, and possibly PF13_0074 and
PF14_0726. Similar findings have been noted previously (Mu
et al. 2010). Genes under balancing selection typically exhibit
short haplotypes, as their SNPs segregate for unusually long
periods of time during which recombination breaks down

haplotypes. If the selective sweeps do originate in these
genes (and not at nearby variants absent from the array),
they may reflect nonimmune pressures. Many highly poly-
morphic antigenic loci in P. falciparum have roles unrelated to
immune evasion and presumably fix adaptive mutations re-
lated to these functions. For example, clag3 genes, in the same
gene family as one of our sweep candidates (clag2), exhibit the
high polymorphism typical of genes encoding surface-
expressed cytoadherence proteins. Nevertheless, two clag3
genes were recently found to be associated with resistance
to antimalarial drugs, suggesting that their products also me-
diate entry of drugs (Nguitragool et al. 2011).

Alternatively, we may be detecting positive selection at
these loci as a variant unfamiliar to the host immune
system rises from very low frequency. Previous studies of ma-
laria antigenic genes (ama1 in particular) have shown com-
plex patterns of selection (Cortes et al. 2003; Polley et al.
2003; Gunasekera et al. 2007), with evidence for both positive
and balancing selection (Mu et al. 2010); a long-haplotype
signal at ama1 has been detected in Asia (Mu et al. 2010).
Sequencing-based study of these regions, preferably in multi-
ple geographic regions, should provide better insight into the
selective processes at work.

Another unexpected candidate locus codes for throm-
bospondin-related anonymous protein (TRAP), a conserved
protein expressed in P. falciparum sporozoites. It contains
extracellular domains associated with hepatocyte invasion
(Muller et al. 1993; Wang et al. 2005) and has previously
shown evidence of balancing selection (Weedall et al. 2007).
TRAP has also been found to mediate the invasion of salivary
glands in mosquitoes (Ghosh et al. 2009). It is possible that
maintenance of long haplotypes reflects adaptation to diver-
gent ligands in different mosquito species.

Materials and Methods
Plasmodium falciparum isolates were obtained in 2008 from
three sites near Banjul in The Gambia and during the period
2001–2009 from three clinics in Senegal—in Thies (100 km
from Dakar), in Pikine (10 km from Dakar), and in Vellingara
(500 km from Dakar and on the other side of The Gambia).
Gambian parasites were taken from clinical samples, whereas
Senegal samples included both directly drawn and
culture-adapted parasites; see supplementary note for details
on DNA extraction, Supplementary Material online.
Culture-adapted samples with evidence of multiple infection,
based on polymorphism typing at the msp loci (Viriyakosol
et al. 1995), were subcloned to isolate a single strain.

SNP calling was as described in Van Tyne et al. (2011):
parasite DNA was hybridized to a P. falciparum Affymetrix
array containing 74,656 SNP markers and genotypes called
using the BRLMM-P algorithm. SNPs were validated by com-
paring array genotypes with Sanger sequencing genotypes for
17 reference strains (Van Tyne et al. 2011); perfect concor-
dance was required, as was a minimum 80% call rate.
Genomic positions and translations are based on the
PlasmoDB v5.0 assembly and annotation (PlasmoDB.org).
SNPs within var, rifin, or stevor genes were dropped to
reduce artifacts from duplicate sequence. After these filters,

FIG. 1. First two principal components of genotype variation. Red:
Gambian samples (all directly drawn). Green: culture-adapted Senegal
samples. Blue: directly drawn Senegal samples.
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FIG. 2. Signals of selective sweeps. Significance�log10(P-value) for all SNPs for (a) REHH and (b) iHS; QQ plots (observed vs. expected P values) for (c)
REHH and (d) iHS. Panels c and d also show the P value distribution with sweep loci removed (teal). Dashed lines: Bonferroni significance (0.05 level).

Table 1. Genes in Regions with Signals of Selection.

Chromosome Genes Gene annotation Test

2 PFB0935w1 Cytoadherence-linked asexual protein 2 iHS

4 PFD0260c Sequestrin iHS

4 PFD0735ca Conserved Plasmodium protein, unknown function iHS

4 Intergenic REHH

6 PFF1335c 4-methyl-5(B-hydroxyethyl)-thiazol monophosphate biosynthesis enzyme Both
PFF1350c Acetyl-coenzyme a synthetase
PFF1365c HECT-domain (ubiquitin transferase), putative
PDD1460c Conserved Plasmodium protein, unknown function
PFF1470c DNA polymerase epsilon, catalytic subunit a, putative

7 PF07_0035 Cg1 protein Both
PF07_0036 Cg6 protein
PF07_0038a Cg7 protein
MAL7PI_28a pfcrt; chloroquine resistance transporter
PF07_0042 Conserved Plasmodium protein, unknown function

7 PF07_0053 Conserved Plasmodium protein, unknown function iHS

11 PF11_0344 Apical membrane antigen 1 precursor, AMA1 iHS

13 PF13_0074 Surface-associated interspersed gene 13.1 (SURFIN13.1) iHS

13 PF13_0201a Sporozoite surface protein 2 iHS

14 PF14_0726 Conserved Plasmodium protein, unknown function iHS

aGenes that are no longer significant if double Bonferroni correction applied.
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missing SNP genotypes were imputed for use in the selective
sweep search, with 12,885 SNPs successfully imputed.

FST was calculated using the method of Weir and
Cockerham (1984); statistical significance was calculated by
permuting population labels. iHS was computed according to
the method of Voight et al. (2006) and REHH according to the
method of Sabeti et al. (2002). Recombination maps for iHS
were generated with the software package LDhat (McVean
et al. 2002), using the program Interval with a block penalty of
5.0. As both of these tests do not tolerate missing data, SNPs
were imputed with PHASE 2.1.1 (Stephens et al. 2001;
Stephens and Scheet 2005). A total of 7,486 fully imputed
SNPs were polymorphic among the 70 individuals.

REHH and iHS scores were normalized in 20 equal-sized
bins of derived allele frequency, with ancestral alleles inferred
from a P. reichenowi hybridization (Van Tyne et al. 2011).
Standardized iHS and REHH scores were converted to
two-tailed P values using a normal distribution. Genome-
wide significance was calculated 1) separately without correc-
tion for the two tests and 2) jointly across both tests. As the
two tests are not independent, a Bonferroni correction for
multiple testing is quite conservative. To test whether long
haplotype signals could come from differences in sample
preparation, iHS scores were calculated separately for direct
and culture-adapted samples.

Supplementary Material
Supplementary methods, notes, figures S1–S5, and tables S1
and S2 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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